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The Role of Order in Distributed Programs

Kenneth Birman
Keith Marzullo

Abstract

We discuss the role of order in building distributed systems. It is
our belief that a "principle of event ordering" underlies the wide range
of operating systems mechanisms that have been put forward for build-
ing robust distributed software. Stated concisely, this principle is that
one achieves correct distributed behavior by ordering classes of dis-
tributed events that conflict with one another. By focusing on order,
one can obtain simplified descriptions and convincingly correct solu-
tions to problems that might otherwise have looked extremely complex.
Moreover, we observe that there are a limited number of ways to obtain
order, and that the choice made impacts greatly on performance.

1 Introduction

Researchers have proposed a variety of mechanisms for building distributed
software within which component programs cooperate to perform tasks con-
currently, maintain replicated data, and respond to failures or recoveries by
dynamically reconfiguring. These mechanisms typically provide guarantees
of "consistent" (correct) behavior, but the precise meaning of consistency
and the methods by which consistency is achieved differ widely. This makes

it difficult to compare the different methods with one another.
This paper is based on the premise that most forms of distributed con-

sistency can be achieved by order generating and preserving mechanisms.
While It is not surprising that consistency should be closely related to or-

dering, we believe that the fundamental nature of this relationship has not
been widely appreciated. Here, we show that the manner in which order
is generated and preserved has significant performance implications, and
observe that dissimilar high-level abstractions are often implemented using
su -prisingly similar ordering mechanisms. Abstracted from any particular
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system, such ordering mechanisms may provide a suitable base for building
distributed operating systems and programming languages.

2 Relating consistency to order

2.1 Reasoning about consistency

To establish the "correctness" of a distributed system one specifies what we
will call a distributed consistency property and shows that it is maintained
during execution. Such a property t.kes the form of a predicate on the states
of system components. Because the states of components (and perhaps the
predicate itself) may evolve during computation, one also gives a rule telling
when it should be satisfied.

This raises two issues. The first concerns the meaning of time in a non-
realtime distributed system. Lamport has observed that for such systems,
any mechanism capable of ordering events, giving a way to label them and
providing a way to compare labels can play the role of time [Lam78]. In
fact, although it is common to loosely treat time as synonymous with re-
altime, there is imprecision in the degree to which realtime clocks can be
synchronized in a network. Lamport argues that temporal algorithms for
asynchronous distributed systems should be based on mechanisms such as
logical clocks, which enable a program to determine the order in which events
occurred, without requiring clock synchronization. In the case of consistency
predicates for asynchronous settings, it follows that a rule telling "when" to
evaluate a predicate should be expressed in terms of which events occur
before the predicate is examined and which occur afterwards.

A second issue relates to "inconsistency" that has no operational conse-
quences. If a system is consistent in all observable states, we would argue
that it behaves correctly - even if it passes through unobservable states
that violate consistency. A system can have many sorts of "observers". The
states on which operations are executed are internally observable. This leads
us to require that the distributed consistency property hold on the process
states a distributed operation reads or modifies. For a system that takes
external actions, the external world is an observer of system state - and
hence consistency should hold in situations where such an observer might
be able to detect violations.

2



, I 'Token Holder
I Ii /
I I

II I

I IRequest~ /Pa 
ss

I I!

I Iq

I I

Time: T1  T2 T3

Figure 1: Execution of a tok'm-passing algorithm

2.2 A token passing example

How do these issues enter practical problems? Consider the problems of mu-
tual exclusion and resource management. A simple mutual exclusion scheme
might support two operations: ACQUIRE and RELEASE. A distributed system
can implement mutual exclusion with token passing, employing REQUEST

and PASS operations for token transfer.' A correct execution will satisfy

many consistency properties: that there is at most one holder of mutual
exclusion at any time, this holder previously did an ACQUIRE, and so forth.
Concerning the token, we would require that the process holding mutual ex-
clusion also holds the token, that there is always exactly one token holding

process, etc.
Now, consider the execution in Fig.1, where q initially holds the token

and passes it to p in response to a request. There are many ways to examine
the state of this system. If we look at p at time T1 and q at time T3 , we
would find two tokens, and if we looked at both at time T2 we would find
none. Obviously, the former "state" is observed in an unreasonable way: one
should examine system states at the same time. On the other hand, in the
absence of precisely synchronized realtime clocks, there is no way to take
a simultaneous snapshot: times T, and T 2 may well be indistinguishable

to processes p and q. Now consider the latter system state. This seems )n For
to expose a weakness in our consistency rule, which fails to address the --

case where the token is in transit when we look at the system. Yet, it is

'In systems that support lightweight tasks, a process holding the token could use any d El
correct scheme for "local" mutual exclusion. t 1 31,
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reasonable to claim that unless such a state is observable the consistency
rule shouldn't need to cover it.

One solution to this class of problems is to examine only consistent
cuts [CL85]. A consistent cut is any sampling of process states such that if
q is examined after receipt of message m from p, then p must be examined
subsequent to sending m. (A consistent snapshot is a consistent cut in which
channel contents are also recorded). Consistent cuts eliminate the first of
the above problems, but not the second: we would still need to extend the
consistency rule to allow the case where the token is in transit (and hence
there is no holder).

2.3 A resource management example

This specific problem of messages in transit is symptomatic of a larger class
of problems where a complex operation violates consistency while it is in
progress. Consider a set of resource manager processes that cooperate to
control a set of resources accessed by application processes. Overloaded
managers can transfer responsibility for a resource by sending a TRANSFER

message that informs all processes in the system of the new manager. Until
the transfer occurs, a manager continues to handle new service requests;
after the transfer it rejects requests, which the client retransmits to the new
manager. The consistency rule could be that each resource is managed by a
unique process at any given time, and that during a period when a resource
is transferred t times, no request ever needs to be retried more than t + 1
times.

This system can be easily built using multicast primitives to implement
the transfers, such as the ones the ISIS system supports [BJ87b,BJ87a].
Requests can then be performed using conventional RPC. However, such
an implementation will violate the consistency predicate along many pos-
sible consistent cuts. Consider the multicast message corresponding to a
TRANSFER. This cannot be delivered instantaneously, hence there will be
cuts in which some processes have received the message and some have not.
Worse, some mlticast protocols transfer messages to their destinations in

a first phase but delay delivery until some other event takes place. For
such a protocol, there will be consistent cuts in which all messages have
arrived, but some have not been delivered. Short of devising a very compli-
cated consistency predicate or modifying the consistent cut algorithm to be
knowledgeable about the way the protocol works, the only thing one can say
is that consistency will hold for those cuts reflecting all-or-nothing message
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delivery. The same issue would have arisen in the token passing problem if
tokens were passed using a multi-phase commit protocol.

2.4 A conjecture about consistency and ordering

Is there a way to formulate an arbitrary problem so that it is clear when
a consistency property should hold? A consistency property is a predicate
that refer to a distributed state. Complex operations, such as the TRANSFER

operation described above also refers to a distributed state. Clearly, some
precondition over the distributed state should hold prior to doing these sorts
of operations too. Let us refer to distributed operations like these as meta-
operations.

We conjecture that:

Any system concerned with maintaining consistency must impose
and respect ordering when meta-operations conflict.

Two issues arise. One is how to tell when meta-events conflict and need
to be ordered. This question is highly dependent on semantics, and lies
outside the scope of this paper. The second concerns how to impose and
respect ordering when icessary.

Our conjecture sounds like a serializability constraint on meta-operations.
However, notice that that except for its use of ordering, the problem has lit-
tle in common with transactions that read and write a shared database using
concurrency control and multi-phase commit protocols, which is the tradi-
tional context for serializability arguments. Nor are we trying arguing for
totally ordered multicast protocols or the ISIS virtual synchrony property,
although this paper is certainly motivated by the latter. Our goal is to
understand when one needs to pay for the ordering that protocols such as
these provide; to use them without regard for need would be a costly propo-
sition. Also, multicasting arises in only a subset of distributed systems. By
abstracting away from message passing per-se, one arrives at more general
results. Moreover, multicast based systems typically treat each multicast
as a separate event. It is unclear that results derived for such a setting
apply when such tactics as piggybacking one message on top of another are
permissible.

Let us summarize our observations:

1. One achieves consistency in a distributed system by ordering events
that conflict with one another.
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2. These events involve sets of operations that occur in multiple processes
but are nonetheless related.

3. The type of conflict-based ordering needed to ensure consistency is
more primitive than transactional serializability or virtual synchrony.

The remainder of this paper starts by making the ideas of meta-events
and meta-event orderings more precise, asking how meta-event orderings
come about, and exploring the cost implications that ordering may have
at the application level. Then, we look at how order is used in a variety
of distributed computing systems. The paper concludes by asking what
the implications of a principle of distributed ordering might be for future
distributed systems design efforts.

It is not our goal here to provide a formally rigorous treatment of meta-
events and order. We will also only touch on issues of fault-tolerance and
realtime.

3 Meta-event orderings

In this section, we introduce an event-ordering model that includes meta-
events and discuss what it means for two meta-events to be ordered.

3.1 Events and Event Orderings

We will start with the standard partial-order representation of a distributed
system. At the most primitive level of a distributed system, only certain
types of events can be said to be "ordered". Consider a system of processes
that communicate using messages. 2 Processes execute operations, which are
indivisible units of work: computation, sending a message, or receiving a
message. We use the term event to denote any of these activities.

Event orderings come about when an operation is influenced by (i.e.
reads from) some prior operation, or when the logic of the program delays
the start of one operation until another has finished, or when a message
sent by one process is received in another. It follows that if one stops the
execution of the system at some instant in time, the execution up to that
point can be described by a tuple (P,E,--*), where P is a set of processes, E
is a set of events, and --* gives the order in which the events occurred.

2The ability to share memory between processes doesn't change things in a fundamental

way, but it would introduce complexity.
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The partial order -- is actually defined as the transitive closure of two
more primitive partial orders:

1. The internal ordering on operations, defined on a per-process basis.
For events a and b occurring in some process p, a --- b denotes that a
read from b, or was constrained by the logic of the program to execute
after b.

2. The communication ordering, defined on a per-message basis. For
message m sent from process p to q, sndp(m) --* rCVq(m).

3.2 Meta events and meta orderings

Earlier, we discussed the idea of a meta-operation, the execution of which
gives rise to a meta-event. A meta-event is a set of logically related events
at multiple processes. Examples of meta-events include the delivery of a
multicast message to some group of destination processes, the creation of
a snapshot of the distributed state of a system, the detection of a process
failure by the processes that survived, or a transaction on a database.

We model a meta-event by a tuple (i, M) where i is an initiating event
and M is a set of events satisfying Vm E M - i -- m. We will say that two
meta-events are ordered if their event sets are ordered:

(i, M) -+ (j, N) iff Vm E M, n E N : m -4 n.

No statement is made about the ordering of the initiation events; we woant to
allow the case where two meta-events are started concurrently but ultimately
give ordered outcomes.

Notice that a meta-event need not correspond to an invocation of a
multicast or some other communication protocol. That is, we do not require
here that the meta-event be a discrete activity separable from the rest of
the system's execution. The communication that links an initiating event
to the outcome events could be hidden in any of the mechanisms by which
information is transmissible within a distributed system.

It may appear that failure detection by timeout and the detection of
"external" events through sensors give rise to meta-events that lack a single
initiating event. However, if multiple processes try to do these things in
parallel, they may not all observe the same outcome. For example, one pro-
cess might see an overloaded process timeout, while other processes believe
that it remained operational. If internal consistency is needed, a software
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agreement protocol would have to be executed. This converts the physical
timeout events to logical ones, which fit our rule.

3.3 Origins of meta-order

Imagine a distributed system in which process p wishes to initiate meta-
operation (i, M). Say that this operation should be ordered with respect to
certain types of meta-events. The question is how p can achieve this ordering
and how it is conveyed to the processes executing the events m E M. There
are two static cases and one dynamic case:

Computational ordering: The first static case is when the meta-events
that should be ordered are initiated within a single computation. That is,
p "knows" about previously initiated meta-events which should terminate
first at any destinations where they overlap with M. Say that (i', M') is such
a prior meta-event. Then it must be the case that i' --* i, because p could
not otherwise know about (i', MI). Since -- is transitive, Vm E M, i' - m.
In other words, there is a way to pass information about events prior to M
to the places where events in M will occur. As we will see below, this can
be exDloited in different ways. but thp essential point is that the system has
the ordering information it needs and has a way to get it to where it will be
needed. No additional messages are needed, although some messages will to
be larger since they need to carry some representation of this information
to the places where it will be used.

Locking schemes also fit into the computational paradigm. In these, the
"lock manager" delays granting a lock until after it has been released by
prior holders, establishing a causal relationship in which the new holder's
actions occur after the previous holder's release.

A priori ordering: The second static case occurs when p knows about
some event that will take place elsewhere, but was not initiated prior to
i. That is, the semantics of the operations include the requirement that
Vm E M, m' E M', m -- i m'. For example, p's operation may be in response
to an earlier operation that concurrently started an operation on q, and we
want the result of q's operation to be ordered before that of p's. Again, p
can pass whatever information it has to the places where the events m E M
will take place. Presumably, the processes that receive this information can
wait if necessary. (Otherwise, p will need to wait until q's event has occurred
before initiating (i, M), but this takes us back to the computational case).
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Dynamic ordering: The third case is the hardest. Here, p does not know
if other meta-events might be initiated elsewhere, concurrent with (i, M).
If some other process has initiated a meta-event that conflicts with (i, M),
the two events should be ordered, although the order will not be known a
priori. On the other hand, if no "conflicting" event is present, (i, M) should
simply be allowed to occur. In the dynamic case, additional information is
needed before the events in M can take place. As we will see below, the cost
of this information (the communication needed to obtain it) is significantly
higher than in the two static cases.

4 The cost of dynamic ordering

How much does dynamic order cost? This problem is well known in dis-
tributed systems.

An extreme case of dynamic ordering arises in algorithms for comput-
ing a consistent snapshot. An example is the method of Chandy and Lam-
port [CL85], which flushes messages from the communication channels using
marker messages; the channels are assumed FIFO, hence messages sent prior
to the snapshot are received prior to the markers. The cost is high: a marker
message flows in each direction between each pair of processes. Moreover,
the only meta-events in the basic algorithm are those related to forming
snapshots. That is, the snapshots are ordered relative to base events, but
might cut through other types of meta-events used in the application. The
cost of forming a snapshot ordered relative to other sorts of meta-events
could be even higher.

Dynamic ordering also arises in multicast protocols that provide ordered
message delivery and in protocols for distributed mutual exclusion. Here,
we will focus on the multicast case. Ignoring failures, a multicast can be
modeled as a meta-event (i, M) in which i denotes the initiation of the mul-
ticast and M the set of message delivery events. Existing atomic multicast
protocols achieve delivery ordering in one of two ways, and mutual exclusion
protocols can generally be classified into the same two categories.

One approach is to implement a rule by which for each pair of con-
current multicasts, some uniquely identified process must pick their order-
ing. For example, this can been done using token passing (the token holder
picks) [CM87], or with a tree-structured scheme (the least common ancestor
picks) [GMS88]. In sufficiently static settings, this can also be done with a
hashing scheme [CG86].

9



The other approach is decentralized. In this scheme, the processes vote
on the ordering they prefer, and any process with the full set of votes can
deduce the ordering rule to use. A two-phase protocol based on this approach
is described in [BJ87b]. The "state machine" approach is similar; it employs
a fully decentralized, fault-tolerant protocol to achieve ordering [Sch86].

There are ordered broadcast protocols that utilize external sources of
order. We would classify these as instances of the first case, where the order
generating "process" is implemented in hardware, or hidden within a clock
synchronization algorithm. For example, the Linda S/Net implementation
exploited broadcast communication hardware for this purpose [CG86]. Like-
wise, the Delta-T protocols operate using synchronized clocks and realtime
timestamps; they delay message delivery long enough to compensate for
uncertainties in clock synchronization and transmission time [CAS86].

There are also ordered broadcast protocols that combine some of the
work done for protocol invocation t with that for invocation t + 1; for exam-
ple, the ISIS failure detection protocol [BJ87b]. Such a strategy may reduce
the overall cost of the protocol, but does not constitute a fundamentally new
way of obtaining ordering.

Notice that dynamic order comes at a high price. In addition to the extra
communication required relative to the two static cases, dynamic ordering
requires that events be delayed, and this latency can directly impact the
application program. That is, there is always some process which prior
to some point in its execution will not be able to"safely" perform certain
actions. It must wait to obtain additional information, and this latency
limits the rate at which the application can make progress.

Thus, the choice of ordering method can have important practical per-
formance implications. We will see an example of this in section 5.

5 Two token passing implementations

A brief example will illustrate how ordering issues can enter into a higher-
level algorithm. Our goal is to implement the token passing part of the
mutual exclusion scheme described above using a static set of ISIS processes
(the solution can easily be generalized to a dynamic set, but we will not do
so here). The problem was first solved by Schmuck [Sch88]; the treatment
given here follows one in [BJ89].

We need a some detail about two multicast primitives supported by ISIS.
CBCAST and ABCAST.

10



" CBCAST ensures that if there are two CBCASTs satisfying i - 1',

then delivery order matches the invocation order: (i, M) --+ (i', M').

" ABCAST extends CBCAST by also ordering concurrent invocations,
picking an order to use in the concurrent case.

5.1 ABCAST solution

Using ABCAST we can implement a very simple token passing algorithm
(Fig. 2). All operations (PASS and REQUEST with no parameters) are multi-
cast to the entire set of processes. Each process maintains a list of pending
operations. All REQUEST operations are granted in a deterministic order,
and a REQUEST is granted when a PASS is received. Since all see the same
operations in the same order, behavior is identical.

5.2 CBCAST solution

An alternative token passing scheme multicasts operations using CBCAST
(Fig. 3. A consequence is that processos may receive requests in different
orders, aid that the request lists at two different processes may not contain
the same requests when a given PASS operation is received. In this imple-
mentation, the process doing a PASS operation first picks the request that it
will grant (e.g. the first one on its list of pending requests), and includes this
information as part of the multicast (delaying the PASS in the case where
theri are no pending requests). Processes receiving the pass operation must
look up the granted request on their list of pending requests (it is easy to
show that they will find it there) and delete it. This algorithm is proved
correct in [BJ89], using the observation that REQUEST and PASS operations
are totally ordered by -- along the path that the token follows.

5.3 Use of order in the two algorithms

How would one pick between these two solutions to the problem? One is
easier to understand than the other, but the the difference in performance far
outweighs any difference in complexity. The ABCAST algorithm is "tightly
synchronous": all processes move in lock-step, and computation advances
slowly because of the costs intrinsic to ABCAST. The CBCAST version is
much faster: all the multicasts can be done asynchronously, in which case
computation will be limited only by processor speed and the capacity of

11



the operating system to buffer multicast requests and perform them in the
background. Using ISIS, these algorithms can be compared experimentally:
for 5 processes running on SUN 3/60 hardware, the performance difference
exceeds a factor of 10, and this grows with the number of processes.

From the perspective of ordering, the algorithms differ in the way that
they obtain the ordering needed to maintain consistency. The former ignores
the invocation order of the operations. It acts as if all operations potentially
conflict with one another, and resolves this by generating a strong, globally
observed ordering that it uses to control execution. The CBCAST version
is more cautious in its use of available ordering. By having the process that
is about to do a PASS decide what request to grant, consistent distributed
behavior is achieved without ever resorting to a costly ABCAST, and the
ordering problem is reduced to the computational case.

We believe this example is demonstrative of the general problem. When
we build distributed systems without attention to the amount of ordering
needed to achieve consistency, and the ways that ordering can be preserved,
we can find ourselves using distributed programs as inefficient and "inele-
gant" as the ABCAST token passing algorithm.

6 Completeness of the model.

Could there not exist many levels of ordering, like the ones that CBCAST
and ABCAST provide, but differing in the precise rule that they implement?
In the case of multicasts, one can prove that these two types of ordering are
complete (in the sense that these can implement any other ordered prim-
itive) within the problem classes that they solve. Schmuck does this for
CBCAST [Sch88], and Schneider discusses work on the state machine ap-
proach which includes type of ordering achieved by ABCAST [Sch86]. The
same results can be expected to hold in the case of meta-event orderings.

This is not to say that more complex forms of ordering are not mean-
ingful. In fact, if one moves to systems that require ordering on sets of
meta-events, more complex algorithms are definitely needed. For example,
the ISIS system implements a third multicasting primitive, GBCAST, which
it uses for process group membership changes. GBCAST provides ordering
with respect to more than one class of meta-events, and requires a more
costly 3-phase protocol.

An interesting direction to pursue would be a theory about the compo-
sition of meta-operations and meta-orders. This is discussed more in the

12

mmm IIIIIIII IIIm I mll I n nOllll EnuOln



conclusions of this paper.

7 Higher level consistency and ordering.

So far, our examples have been low-level ones. Most distributed computing
mechanisms, in contrast, exist at a very high level: reliable multicasts, trans-
actions and 2-phase commit, the ISIS virtually synchronous toolkit, virtual
time, the Linda tuple-space, the Psync primitives [Pet87], and so forth. Our
task in this section will be to bridge the gap. In so doing, the relationships
between these systems will become more clear.

7.1 Who is currently operational?

Agreement on failure is perhaps the most fundamental problem in a dis-
tributed system. Even the simplest real distributed systems must address
this issue. For example, in a system with two processors connected by a
single communication link, usually two kinds of failures are assumed: pro-
cessors may crash, and the link may suffer from a performance failure (i.e.
it may delay or drop a message). These two kinds of failures are indistin-
guishable by a sending process, yet the results of an inconsistent decision
can be disastrous [Gra79]. As a result, several existing systems structure
their state such that the recovery from both kinds of failures are identical.
For example, in the Sun NFS protocol [SUN86] a connection holds very
little state, so a crash can be treated as a particular kind of performance
failure. Many other protocols "time out", treating performance failures as
crash failures.

When more than two processes are involved, substantial additional com-
plexity arises. For example, transactional concurrency control mechanisms
impose order on read and write operations so that the execution of a set of
concurrent transactions is equivalent to a serial execution. The best known
such mechanism for managing replicating data is the available copies al-
gorithm. It has been shown that if all processes agree on when a process
fails, serializability is maintained. If they do not agree, then a transaction
may not see a the effects of a confficting operation from a virtually earlier
transaction [BHG87]. Thus, transactional concurrency control mechanisms
must order failure events relative to the execution of other operations -
specifically, commit operations.

The ambiguity of crash and performance failures makes agreement on
who is operational difficult. If the effect of executing an operation can be

13



undone, as an abort of a transaction, then a good way to deal with apparent
failures is simply to cause an abort. This is simple and conservative: if the
failure was not real, the only cost is that the transaction must be redone. On
the other hand, abort is not always meaningful; for example, in systems that
take external actions. Lacking this alternative, the operational processes
must instead agree on which processes have crashed, forcing those processes
to crash or rejoin the system if it later turns out that the problem was a
performance failure.

The protocols for agreeing on who is operational are clearly an important
part of any distributed system. Moreover, such protocols bear a strong re-
lationship to the ordering and consistency preserving mechanisms discussed
above.

To see this, consider an application that makes use of a list of the oper-
ational processes. At some point in an execution, process p goes from being
operational to having failed. An application that depends on this informa-
tion may dynamically adapt itself to the failure of p, and it then becomes
important that events initiated after the failure only encounter processes at
which the failure is already known. For example, if q sends S a message that
relates to the failure of p, inconsistency could easily arise if s receives the
message prior to observing the failure. Any messages ordered prior to the
observation of the failure of p must be flushed from the channels, effectively
forming a snapshot. A protocol capable of achieving this handling of process
failures necessarily creates meta-order.

It is not surprising to find that the ISIS system solves this problem using
a multiphase consensus protocol that terminates in two phases after the last
failure [BJ87b]. During the last phase, this protocol does a flush, much like
the transmission of channel markers that occurs in the Chandy-Lamport
consistent snapshot algorithm [CL85]. The ISIS protocol can thus be under-
stood as a mechanism for drawing a line (cut) across the system execution:
events prior to the cut have not observed the failure, all processes observe
the failure "simultaneously" along the cut, and events after the cut all reflect
the failure event. In other words, the ISIS solution works by establishing
meta-ordering. Similar mechanisms appear in other systems ([CM87], for
example). We would argue that while these protocols are necessary, they
have for the most part not been well presented and understood. This seems
to be a problem for which an order-based treatment could lead to significant
simplification. For example, Cristian's solution to the membership problem,
in [Cri88], is notable for a specification that uses ordering properties and for
the simplicity of the algorithms proposed.
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7.2 Creating and Preserving Order

According to the thesis of this paper, consistency-preserving distributed
mechanisms should fall into two categories: those where the meta-operations
are ordered non-dynamically, and those where the meta-operations are or-
dered dynamically. In fact, it was this observation that led us to investigate
ways meta-operations can be ordered.

An example of the use of a prior ordering arises in timestamp-based
concurrency control algorithms [BHG87]. When created, a transaction is
assigned a timestamp from a total order, and the concurrency control algo-
rithm can delay or abort a transaction if it attempts to access a variable in
an inconsistent order. Liskov and Radkin use a similar method in their work
on highly available servers 1LL861. A 2-phase locking algorithm, in contrast,
works by dynamically ordering meta-operations. Any transaction is ordered
either before the lock point of another transaction, or after its commit point.
The meta-operations in this case are the read, write and commit operations,
and perhaps the write-lock operation if locks are replicated.

Quorum-based replicated data algorithms are an example where one can
see the relationship between what we have called dynamic order and com-
putational order. Viewed externally, a quorum write is clearly a case of
dynamic order, generated using a decentralized scheme. Now, consider the
same operation at a microscopic level. Typically, the write will require two
phases: a first phase during which the value to be written is distributed
and the version number to be used is computed, followed by a second phase
during which the update is committed provided that a quorum of responses
was received and aborted otherwise. At this level of abstraction, the first
phase determines an order using a decentralized rule, and the second phase
respects that order. That is, the second phase is computationally ordered
in the sense discussed above.

Given an order, there are many distributed mechanisms for preserving
it. The pessimistic schemes preserve order at all times. In the case of
transactional systems, a pessimistic way to preserve order is to force an
operation to walt until the operations prior to it complete, as for locking.
Above, we mentioned the ISIS CBCAST primitive. CBCAST maintains
ordering information by augmenting the data sent with a message. When
a message m is sent to a site, copies of any messages m' that m is causally
dependent upon are included. (Of course, if the site has already received
rn, it need not be sent a second time).

Another example of such a mechanism is Psync [Pet87]. With this mech-
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anism, the dependencies among messages are available to the programmer.
The order information can be carried as unique message identifiers rather
than by forwarding the whole message as done in CBCAST. It is interest-
ing to note that the architects of Psync chose their model in order to unify
other communication mechanisms. They reasoned that it would be rela-
tively cheap to implement Psync, and then hopefully build other ordering
mechanisms cheaply on top of Psync.

The optimistic schemes for preserving order depend on a mechanism for
detecting order violations and rolling back. We would classify timestamped
concurrency control and Jefferson's work on virtual time into this category.

7.3 Order in Realtime Systems

A realtime system is one in which a set of computer processes interact with
a set of physical processes. In general, the meta-operations of the computer
processes must be ordered with respect to external actions in the physical
processes. Since a computer process can not in general delay a physical
process, the order must in some part be generated by the physical process.
This order is most easily represented as a total order of events with re-
spect to some monotonically increasing physical variable. The most obvious
candidate is the real time, but any such physical variable can be used.

Little of what we discussed above can be applied directly to realtime
systems. For example, the CBCAST solution to the token passing prob-
lem gains a substantial performance improvement by substituting a form
of logical ordering for the total ordering provided by the ABCAST proto-
col. This logical ordering bears no relationship to realtime, and hence the
mechanism as presented above is inappropriate for use in a realtime system.
The ABCAST solution, on the order hand, could be adapted fairly easily to
a realtime setting (in fact, one could substitute Cristian's Delta-T atomic
broadcast and use the algorithm without additional changes). Yet, some
realtime systems place demanding performance requirements on the proto-
cols they use, and the performance advantages of the CBCAST solution in
the asynchronous case suggest that there might also be benefits to using it
in the realtime case. The question that this raises, but which we will leave
open here, is whether there might exist some modified version of CBCAST
that could be used to similar advantage in realtime environments.
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8 Conclusions

Our field has always searched for principles to guide the development of
operating systems and distributed systems. We believe that the principle
of distributed ordering meets this criteria, namely that distributed systems
achieve consistency through consistent distributed orderings of conflicting
events. Insights into the fundamental properties of order-based algorithms
would impact a wide range of distributed and parallel systems.

Distributed computing has long been characterized by intense interest in
performance and robustness. With the increasing focus on closely coupled
distributed services, the sorts of consistency issues we raise here are becom-
ing widely relevant. One implication of a principle of distributed ordering
is that such services will achieve the maximum performance and robustness
only through a careful understanding of their ordering requirements, and
through the development of highly refined operating system primitives for
satisfying these requirements.

Several directions suggest themselves for future study.

Order-based operating system primitives. An important question re-
lates to how ordering mechanisms should be presented to applications pro-
grammers. Current systems offer a range of high level order-based abstrac-
tions, such as transactions, quorum replicated data, atomic multicasts, and
virtually synchronous process groups. One cannot help but wonder if there
is a more primitive abstraction from which these higher level mechanisms
could be constructed. Such an abstraction would be particularly useful be-
cause it could support a variety of these mechanisms at once, while also
addressing the needs of applications that have reason to order other sorts
of operations, such as the execution of pieces of code or actions taken in
response to external events. For example, it would be possible to support
a notion of ordered distributed operation that might come close to directly
implementing our meta-operations, but in which the operation to perform
would be specified totally abstractly. A different approach might focus on
order manipulation primitives, like those in Psync [Pet87], but augmented
to have a stronger notion of distributed event and to reduce any dependence
on message-passing.

Order-based language primitives? The development of convenient lan-
guage support for transactions has played a major role in making transac-
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tional systems easier to use and popular as a distributed computing method-
ology. It seems natural to ask if we can devise effective language support for

representing and manipulating order. For example, it would be useful to ex-

plore the possibility of supporting classes of ordered distributed operations
in a multiple type inheritance framework.

How much order is needed? The use of order is closely tied to the cost

of an application. Systematic tools are needed for for determining how much

order an application needs, and perhaps for using ordering as a complexity

measure under which different solutions to a problem can be compared.

Theory of order composition. We noted in Section 6 that a theory is

needed for describing the manner in which meta-orderings can be composed
to obtain higher level orderings. Such a theory could be a valuable tool for

reducing complexity and improving correctness in higher level systems. It

might also help us to identify limitations on what can be achieved in dis-
tributed systems. For example, we noted that the external world may be

an observer of consistency. We also observed that there are limits on the

degree to which actions can be simultaneous within a distributed system.
This limit does not apply to an external observer, hence one could profitably

ask what constraints an external consistency requirement places on the im-
plementation of a distributed algorithm. The answer would undoubtably be
both deep and of practical value.
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To initiate a pass() or requesto:

ABCAST('optype');

On receiving a pass() or requesto:

case Coptype) of
'pass':

if(is-.empty(request..queue))
wants-.requeatt a TRUE;

else
grant (head(request-.queue))

'request':

if (wants. request)
wants-request = FALSE; grant(this.request);

else
append(request-.queue, this-request);

end;

Figure 2: ABCAST token-passing algorithm
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To initiate a pass() or requesto:

case Coptype) of
pass:

while(is-.empty(request-.queue)) wait;
CBCAST('pass', qu-.head(request-.queue));

'request':

CBCAST( 'request');
end;

On receiving a passo) or requesto:

case Coptype) of
ipass(granted)':

grant Cdequeue-.request(request-.queue, granted))
'request':

appendrequest-.queue, this-.request);
end;

Figure 3: CBCAST token-passing algorithm
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